
Abstract. A crucial point in docking simulations is the
scoring function used for estimation of the target-ligand
interaction energy. The usual practice is to employ fast
but simplified empirical scoring functions. Rigorous
quantum chemical methods are too slow to screen vir-
tual combinatorial libraries consisting of thousands of
molecules, but they can be used in the final step of the
simulations for assessing the results obtained. At this
stage quantum chemical calculations can be performed
only for the 10–100 top binders predicted by simplified
scoring functions, and only using linear-scaling
semiempirical quantum chemical methods such as MO-
ZYME. The possibilities and potentialities of the
quantum chemical methods for estimation of the bind-
ing affinities in docking simulations are a largely unex-
plored area, so the main goal of this study is a detailed
evaluation of the potential and limitations of the
MOZYME methodology for estimation of the target-
ligand binding energies and its comparison with
available experimental data.
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Introduction

Predicting the binding affinity between a target and a
ligand forming a noncovalent complex is a very chal-
lenging task that has been pursued for decades.
Although plenty of computational approaches for esti-
mation of the binding free energy of the target-ligand
complexes have been developed [1, 2, 3, 4, 5, 6, 7, 8], no
efficient and reliable method to evaluate the fitness

between the target and the ligand in the general case is
available [1, 2, 3, 4, 5, 6, 7, 8].

The development of an accurate method which will
be able to predict real binding affinities and which will
be, at the same time, computationally efficient enough
to screen virtual combinatorial libraries consisting of
many thousands of molecules is a very difficult task.
One possible approach is to apply a two-stage rank-
ing, i.e. to rapidly scan possible solutions using fast
but simplified scoring functions to obtain initial
‘‘good’’ binders, followed by more sophisticated
methods for assessing the results obtained. Up to now,
the most ‘‘advanced’’ techniques for estimation of
binding affinities, such as free-energy perturbation [9],
the linear-response approximation [10], and a combi-
nation of the molecular mechanical energies with the
continuum solvent approaches (Molecular Mechanics/
Poisson–Boltzmann surface area) [11, 12], have been
derived from empirical force field methods. As a re-
sult, they possess both the advantages and pitfalls of
the force field approximation.

The increasing power of modern computers and the
development of new computational methodologies
have made it possible to perform quantum chemical
calculations on several thousands of atoms [13, 14, 15],
thus giving a more consistent and rigorous treatment
of a molecular system. For example, quantum chemi-
cal methods describe both polarization and charge-
transfer effects in a more realistic manner than by
using point charges in force field approaches. Cur-
rently, quantum chemical treatment of several thou-
sands of atoms with subsequent geometry optimization
can be done using only so-called linear-scaling meth-
ods at the semiempirical level, for example, MOZYME
[16].

The main goal of the present study is a detailed
evaluation of the potential and limitations of the
MOZYME methodology for estimation of the target-
ligand binding energies and its comparison with avail-
able experimental data.

Proceedings of the 11th International Congress of Quantum
Chemistry satellite meeting in honor of Jean-Louis Rivail

Correspondence to: V. Vasilyev
e-mail: vvv900@anusf.anu.edu.au

Regular article

Application of semiempirical quantum chemical methods

as a scoring function in docking

V. Vasilyev, A. Bliznyuk

ANU Supercomputer Facility, The Australian National University, Canberra, ACT, Australia

Received: 15 July 2003 / Accepted: 18 December 2003 / Published online: 8 June 2004
� Springer-Verlag 2004

Theor Chem Acc (2004) 112: 313–317
DOI 10.1007/s00214-004-0589-9



Model systems

The theophylline-binding RNA aptamer (Protein Data
Base reference code 1O15 [17]) provided the first set for
testing the MOZYME methodology. This complex
along with five other theophylline analogs (Table 1)

was already a target of an extensive study using ther-
modynamic integration and the Molecular Mechanics
Poisson–Boltzmann surface area (MM/PBSA) [18].
1O15 consists of 33 RNA residues and theophylline
[17]—1,086 heavy atoms. Theophylline analogs were
built using the theophylline coordinates and then

Table 1. Relative binding energies (in kilocalories per mole) for the RNA–theophylline analog complexes. Experimental binding free
energies were calculated from dissociation constants and were taken from Ref. [18] aDGExp=8.9 kcal/mol bAM1 binding energy is
)3.62 kcal/mol cAM1 binding energy is 19.27 kcal/mol
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optimized in the binding site of thyophylline using the
Amber94 force field [19]. The use of counterions for
neutralizing the molecules would require sampling of
many conformations as the positions of the counterions
are not well-defined. Unfortunately, the number of
possible conformations that can be computed using
semiempirical methods is very limited owing to rela-
tively high computational cost. Thus, we chose to add
hydrogen atoms to neutralize the total charge of )32.
These hydrogens are quite far from the position of the
ligands and we are confident that such substitutions
can be introduced with little or no effect on the binding
energies. Thus, our quantum chemical system consisted
of 1,118 atoms.

The next test system consisted of trypsin and a series
of closely related Na-(2-naphthylsulphonyl)-L-3-ami-
dino-phenylalanine derivatives (Fig. 1) for which ther-
modynamic and structural data are available [20, 21]
(Protein Data Base codes 1K1I, 1K1J, 1K1L, 1K1M,
1K1N). Structure 1K1I was chosen as a reference and

other ligands were placed into the active site after
superimposition and were minimized. A typical quan-
tum chemical system consisted of about 3,720 atoms
with a total charge of +8 on the free enzyme.

Computational method

Quantum chemical calculations at the semiempirical
Austin model 1 (AM1) [22] level were conducted using a
linear-scaling method (MOZYME) [16] and an implicit
solvation model (conductor-like screening model, COS-
MO) [23] as implemented in MOPAC2002 [24].

Since in general the lowest energy structures predicted
by a molecular mechanics force field do not correspond
to the low-energy structures at the AM1 quantum
chemical level, we performed a partial optimization for
each structure using the AM1 method in the gas phase
before calculating binding energies with an implicit sol-
vation model (COSMO).

Fig. 1. Trypsin ligands considered in this study. Compound designations are the same as in Ref. [20]
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In the theophylline analog–RNA complexes, the
optimized region included a ligand and all atoms of the
RNA residues lying within 3 Å (about 180 atoms, i.e.
about 540 variable parameters). The optimized region of
the trypsin complexes consisted of the ligand and crys-
tallographic water molecules lying within 5 Å from
the ligand (about 120 atoms, i.e. about 360 variable
parameters) with the structure of protein being kept
fixed. Prior to calculating the final binding energies, all
water molecules were deleted.

Calculation times

CPU times for one self-consistent-field calculation for
several model systems on two hardware platforms are
shown in Table 2. One can see that large biomolecular
systems up to several tens of thousand atoms can now be
treated at the semiempirical quantum chemical level of
theory in reasonable time, with a full or partial optimi-
zation being feasible for systems up to 6,000–7,000
atoms. A typical calculation with partial optimization of
the RNA–ligand complex (about 1,120 atoms and 540
variable parameters) took 4–5 h. Partial optimization of
the trypsin–inhibitor complexes (about 3,700 atoms and
360 variable parameters) required at least 24 h.

Results and discussion

The relative AM1 interaction energies between the the-
ophylline analogs and RNA versus the experimental
data are summarized in Table 1. One can see that the
relative AM1 interaction energies including solvation
(COSMO) show no correlation with experimental data
(regression coefficient r2=0.004), with the absolute AM1
interaction energies being positive. By contrast, the rel-
ative AM1 gas-phase interaction energies show better
agreement with experiment (r2=0.557) and their abso-
lute energies are negative.

In the case of trypsin–inhibitor complexes (Table 3),
the relative AM1 interaction energies with COSMO
more or less correlate with experimental ones (r2=0.380)
although their absolute interaction energies are again
positive. Gas-phase AM1 interaction energies are
strongly dependent on the total charge of the ligand,

such that the interaction energies are either positive or
negative for positively or neutrally charged ligands,
respectively.

Since binding occurs in an aqueous environment,
AM1/COSMO binding energies are more important than
gas-phase ones. One can see that the AM1/COSMO
approach systematically predicts positive absolute
binding energies for diverse types of complexes, proteins
and RNA. There are two major sources of errors in the
binding energies. First of all, the AM1 method has
known drawbacks in describing intermolecular interac-
tions [25, 26, 27, 28]. Secondly, the COSMO method
implemented in MOPAC2002 was not parameterized
specifically for evaluation of solvation energies of bio-
molecules, and because the absolute solvation energies
for the biomolecule–ligand complexes are approximately
100–1,000 times larger than the AM1 binding energies,
even small relative errors in solvation calculations may
have a large contribution to the binding energies. So, we
think that the positive absolute binding energies
obtained in AM1/COSMO calculations reflect the
unsatisfactory COSMO parameterization, in particular,
the atomic radii.

On the other hand, the relative AM1/COSMO
binding energies are not all that unrealistic considering
that the present work faces a number of limitations. For
example, the conformational space available to the
ligand in the target-binding pocket was not sampled to
estimate the entropy contribution. This gives hope that a
proper calibration of the COSMO solvation method as

Table 2. Calculation times for oneself-consistent-field calculation (in seconds)

Number of atoms

1,118a 3,720b 6,194c 46,452d

Alpha ev68 1 MHze 131.0 1,232.2 2,515.2 35–40 h
Pentium 4 2.66 GHzf 111.2 835.5 1,766.5

aTheophylline–RNA complex (PDB reference code 1O15)
bBovine trypsin–inhibitor complex (PDB reference code 1K1I)
cb-Secretase–inhibitor complex (PDB reference code 1FKN)
dCitrate synthase (PDB reference code 2CTS) in a water droplet
eHP Alpha Server SC system with 127 nodes. Each node contains 4·1GHz ev68 (Alpha 21264C) CPUs and between 4 and 16 GB of RAM
fLinux cluster with 150 Dell Precision 350 nodes, each containing a 2.66 GHz Pentium4 CPU with 1 GB (533 MHz dual channel) PC1066
RAMBUS

Table 3. Relative binding energies (in kilocalories per mole) for the
trypsin–inhibitor complexes

Compound Experiment AM1 in the
gas phase

AM1 with
COSMO

1a 0.2 87.48 0.0c

1k1j(1cMe) 0.0a 87.84 3.90
1k1l(1d) 0.7 152.96 7.19
1k1m(1dAc) 0.2 89.20 6.59
2 2.8 0.30 8.67
1k1n(3) 1.3 0.0b 11.05

aDGExp=)10.4 kcal/mol
bAM1 binding energy is )54.11 kcal/mol
cAM1 binding energy is 4.47 kcal/mol
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well as adequate sampling of the target-ligand confor-
mational space will have a major impact on the quality
of the semiempirical quantum chemical estimation of
binding energies.

Conclusions

In this paper, we presented the first application of a
semiempirical quantum chemical method to estimate
binding affinities of druglike ligands to large biological
molecules. Owing to the increase in computer power and
algorithm performance, it is now possible to treat
quantum chemically large molecular systems up to sev-
eral tens of thousand atoms, with the full or partial
optimization being feasible for systems of several thou-
sands of atoms. However, to unleash the full potential of
semiempirical quantum chemical methods in docking
simulations further study has to be done to improve the
solvation model.
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6. Pérez C, Ortiz AR (2001) J Med Chem 44:3768
7. Muegge I, Rarey M (2001) In: Lipkowitz KB, Boyd DB (eds)

Reviews in computational chemistry, vol 17. Wiley-VCH, New
York, pp 1–60

8. Ehrlich LP, Wade RC (2001) In: Lipkowitz KB, Boyd DB (eds)
Reviews in computational chemistry, vol 17. Wiley-VCH, New
York, pp 61–97

9. Jorgensen WL (1989) Acc Chem Res 22:184
10. Aqvist J, Medina C, Samuelsson J-E (1994) Protein Eng 7:385
11. Srinivasan J, Cheatham TE III, Kollman P, Case DA (1998)

J Am Chem Soc 120:9401
12. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L,

Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srin-
ivasan J, Case DA, Cheatham TE III, (2000) Acc Chem Res
33:889

13. Greatbanks SP, Gready JE, Limaye AC, Rendell AP (2000)
J Comput Chem 21:788

14. Titmuss SJ, Cummins PL, Rendell AP, Bliznyuk AA, Gready JE
(2002) J Comput Chem 23:1314

15. Bliznyuk AA, Rendell AP, Allen TW, Chung S-H (2001) J Phys
Chem B 105:12674

16. Stewart JJP (1996) Int J Quantum Chem 58:133
17. Clore GM, Kuszewski J (2003) J Am Chem Soc 125:1518
18. Gouda H, Kuntz ID, Case DA, Kollman PA (2003) Biopoly-

mers 68:16
19. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr,

Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman
PA (1995) J Am Chem Soc 117:5179

20. Dullweber F, Stubbs MT, Musil Ð, Stürzebecher J, Klebe G
(2001) J Mol Biol 313:593

21. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN,
Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids
Res 28:235

22. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am
Chem Soc 107:3902
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